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Abstract

We find nonlocal particle theories with two-dimensional conformal symmetry,
including examples equivalent to the bosonic open string and closed string. This
work provides a new approach to construct solvable consistent backgrounds in
string theory.

PACS numbers: 11.25.Hf, 11.25.−w

1. Introduction

Many of the remarkable features of string theory are often attributed to the dimensionality
of the string, since these features are not remotely shared by any known particle theory. For
example, a necessity of the T-duality is the existence of winding modes, which is apparently
absent in particle theory. Although it is also possible to take the viewpoint that string field
theory is just a theory of infinitely many fields of particles, the spectrum of the fields should
have an origin in a two-dimensional conformal field theory. The conformal symmetry is
needed to ensure a consistent perturbation theory free of UV divergence and ghosts3. It
is generally believed that the two-dimensional conformal symmetry is at the heart of many
miracles of string theory.

The main idea behind this work is that the distinction between strings and particles is
blurred when we consider particle actions that are nonlocal. Usually we assume that the
equation of motion for a bosonic degree of freedom is a second-order differential equation,
so that the phase space of a D-dimensional particle is 2D. In contrast, the string, viewed as
a collection of infinitely many points, has a phase space of infinite dimensions. But for an
equation of motion involving the nth derivatives, the phase space is nD dimensional. When
n → ∞, it is possible that the phase space of a particle can be identified with that of a string.
It was shown in [2] that the reparametrization symmetry of a particle’s worldline approaches

3 Nevertheless, UV-finite, unitary field theories with infinitely many particles can also be constructed without
reference to the conformal symmetry [1].
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to the two-dimensional conformal symmetry in the n → ∞ limit. This strongly suggests the
equivalence between some nonlocal particle theories and string theories.

On the other hand, higher derivative theories have been known to suffer from many
unphysical problems, such as non-unitarity, spectra unbounded from below, acausality, etc
[3]. These problems are always present in any theory with higher derivatives of a finite order.
Theories with infinite derivatives are hard to classify, and these problems may or may not
be present. The higher derivative interactions in an effective theory should be treated in a
perturbative approach [4]. Higher derivative interaction treated as a fundamental theory is
unusual to most physicists.

In this paper, we find explicit (quadratic) nonlocal actions of particles which respect the
two-dimensional conformal symmetry (section 2). The conformal symmetry is realized as
the reparametrization symmetry of the particle worldline. Noether’s theorem guarantees that
the symmetry generators obey the Virasoro algebra (section 2.2).

We give many examples to illustrate the basic formulation, and suggest how a new
dimension naturally arises on the worldline (to turn it into a worldsheet) in many cases. A
generic nonlocal particle theory may not be unitary but it is easy to, and we give explicit
rules for how to, construct examples preserving unitarity (section 3). Several unitary nonlocal
particle theories are discussed in some detail. First we give a nonlocal particle theory which is
equivalent to an open string in the trivial background (section 4). This equivalence guarantees
that this nonlocal theory is well defined4. Next we give examples equivalent to open strings in
nontrivial backgrounds (section 5). These nontrivial backgrounds can be described in terms
of nonlocal interactions in the string worldsheet theory. Finally we define a nonlocal particle
theory equivalent to a closed string in the flat background (section 6).

Our study reveals a new approach to construct consistent, solvable backgrounds in string
theory. In general these new backgrounds correspond to higher derivative interactions on
the string worldsheet, and are usually evaded in the traditional worldsheet approach to string
theory. Our study also sheds some light on the conceptual question of whether our universe is
made of particles or strings.

2. Nonlocal actions with conformal symmetry

2.1. Canonical quantization of nonlocal particle action

In order to have solvable equations of motion, we restrict ourselves to quadratic actions

S = −
∫

dt x(t)f (∂t )y(t). (1)

This action involves two scalar fields x and y. The case of a single scalar field can be easily
derived from this case by identifying x(t) with y(t).

Let us carry out the canonical quantization. The variation of this action is

δS =
∫

dt{δx[f (∂t )y(t)] + δy(t)[f (−∂t )x(t)] + (x(t)[f (∂t )δy(t)] − [f (−∂t )x(t)]δy(t))},
(2)

where the last term in (· · ·) is a total derivative. The equations of motion are

f (−∂t )x(t) = 0, f (∂t )y(t) = 0. (3)

The most general solution of x and y are

x(t) =
∑

a

xa e−ika t , y(t) =
∑

a

ya eika t , (4)

4 The nonlocal particle theory for worldsheet ghosts is also found (section 4.3).
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where {ka} is the set of zeros of f :

Z = {ka} = {k|f (ik) = 0}. (5)

The total derivative in (2) is

x(t)[f (∂t )δy(t)] − [f (−∂t )x(t)]δy(t) = d

dt
θ, (6)

where

θ = •
(

1 ⊗ f (∂t ) − f (−∂t ) ⊗ 1

1 ⊗ ∂t + ∂t ⊗ 1

)
(x(t) ⊗ δy(t)). (7)

Here • is the symbol for multiplication, i.e. •(f ⊗ g) = fg. The quotient of the functions
of derivative on the right-hand side of (7) is well defined as long as f (∂t ) admits a Taylor
expansion

f (∂t ) =
∞∑

n=0

fn∂
n
t . (8)

The symplectic two-form ω = δθ is then

ω = •
(

1 ⊗ f (∂t ) − f (−∂t ) ⊗ 1

1 ⊗ ∂t + ∂t ⊗ 1

)
(x(t) ⊗ δy(t)) (9)

=
∞∑

n=0

fn

{
•

n∑
k=1

[
(−∂t )

k−1 ⊗ ∂n−k
t

]
(δx(t) ⊗ δy(t))

}
. (10)

Assuming that all zeros of f are simple (non-degenerate), we find

ω =
∑

a

ḟ (ika)δxaδya. (11)

To derive this expression we note that (9) contains the factor

•
(

1 ⊗ f (ikb) − f (ika) ⊗ 1

1 ⊗ ikb − ika ⊗ 1

)
(12)

when acting on the term xa e−ika t ⊗ yb eikbt in x ⊗ y. Since f (ika) = f (ikb) = 0, this factor
vanishes unless ka = kb. When ka = kb, it is obvious that this factor is supposed to be
understood as the derivative of f , i.e., ḟ (ika). From the viewpoint of both the symplectic
two-form and the Hamiltonian, a pair of variables (xa, ya) is independent of another pair
(xb, yb) unless ka = kb.

If there are double poles at ka , the general solution is of the form

x = (xa + pat) e−ika t + · · · , y = (ya + qat) eika t + · · · , (13)

and the relevant part of the symplectic two-form will be

ω = 1
2 f̈ (ika)(δxaδqa + δyaδpa) + · · · . (14)

This is easy to derive from (9). One can consider this as the limiting case of two nearby
simples zeros ka, kb with the difference approaching to zero, (ka − kb) → 0. Similarly, for
triple poles or poles of higher order degeneracy, it is straightforward to derive the symplectic
two-form from (9) in the same way, although the theory would then have either a Hamiltonian
unbounded from below or negative norm states.
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2.2. Particle actions with 2D conformal symmetry

There are nonlocal particle actions with conformal symmetry, which is realized as the
symmetry of worldline reparametrization

x(t) → x ′(t) = x(t + δt). (15)

For reparametrizations in the harmonic basis

δt = ε eint + c.c., ∀ n ∈ Z, (16)

where ε ∈ C and c.c. means complex conjugate, the infinitesimal transformation of x

δx(t) ≡ x ′(t) − x(t) = ε e−int ẋ(t) + c.c. (17)

is generated by the differential operator

Vn = e−int ∂t (18)

satisfying the classical Virasoro algebra

[Vm, Vn] = (m − n)Vm+n. (19)

In the above we have restricted the values of the index n to be integers so that the algebra
generated by Vn’s is no more than the Virasoro algebra. For t compactified on a circle (this
is of course not physical), we can always normalize t so that t ∈ [0, 2π), then { eint }n∈Z

constitute a complete basis for functions of t and the Virasoro algebra is equivalent to the
full reparametrization symmetry of t. For the uncompactified time direction t ∈ R, if we
demand the most general reparametrization symmetry, n can be any real number and the
particle dynamics would have to be trivial. By restricting the values of n to integers, we can
still have many nontrivial models as shown below. Note that a length scale is introduced here
corresponding to the shift �t in t that will make all transformations in (17) trivial. We are
using the unit system so that this length scale is normalized to 2π .

With these Virasoro generators imposed as constraints, the theory of the nonlocal particle
has the gauge symmetry of conformal group, which is the defining feature of string theory.

The symmetry (17) implies that if x(t) = e−izt is a solution to the equation of motion,
then x(t) = e−i(z+n)t must also be a solution for any integer n.5 As long as f (ik) satisfies the
following property:

if f (ika) = 0, then f (i(ka + n)) = 0 for all n ∈ Z, (20)

the action (1) has the conformal symmetry (17). The zeros of the function f must come in
sequences

Z = {zi + n; n ∈ Z}. (21)

The zeros zi constitute a minimal set of zeros such that (21) includes all the zeros of f .
The general solution of the equations of motion is

x(t) =
∑
k∈Z

xk e−ikt , y(t) =
∑
k∈Z

yk eikt . (22)

Without loss of generality we can restrict zi’s to lie within the range [0, 1). If f is symmetric,
f (−∂t ) = f (∂t ), zi always comes in pairs (zi,−zi) except zi = 0 or 1/2. The symplectic
two-form (14) is now

ω =
∑
k∈Z

ḟ (ik)δxkδyk. (23)

Here and below we assume that all zeros of f are non-degenerate and real.

5 There is an exception when zi ∈ Z. Due to the derivative of x in the transformation rule (17), k = 0 does not have
to be a zero of f . We will give examples on this in section 2.4.3.
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The conserved charges are θ with δx, δy given by the symmetry transformation (17):

Qn =
∑
k∈Z

i(k + n)ḟ (ik)xky(k+n). (24)

According to (23), we define the creation, annihilation operators

a−k = (ḟ (ik)k)1/2xk, bk = (ḟ (ik)k)1/2yk, (25)

so that the symplectic two-form is equivalent to

ω =
∑
k∈Z

δa−kδbk

k
. (26)

If k = (zi + n) > 0, a−k is the creation operator and bk is the annihilation operator. If
k = (zi + n) < 0, a−k is the annihilation operator and bk is the creation operator. In order for
(25) to make sense, we assume here that

ḟ (ik)k > 0 (27)

at all zeros of f because this is the condition that the Hamiltonian is bounded from below. A
sequence of zeros {zi + n} is viewed as spacelike if (27) holds. If the opposite holds

ḟ (ik)k < 0 (28)

at a sequence of zeros, that sequence should be viewed as timelike, and the definition of ak, bk

in (25) should be modified by adding factors of (−1) in the square roots. The contribution of
a timelike sequence of zeros of f to the Hamiltonian is bounded from above. For the theory
to be consistent, we should demand that the Virasoro constraints be sufficient to eliminate
unwanted states so that the spectrum of physical states is bounded from below. No-ghost
theorem still needs to be proved.

The conserved charges are

Qn =
∑
k∈Z

B(n, k)a−kbk+n, (29)

where

B(n, k) =
(

ḟ (ik)

ḟ (i(k + n))

k + n

k

)1/2

. (30)

In particular, the Hamiltonian is

Q0 =
∑
k∈Z

a−kbk, (31)

which has a non-negative spectrum upon quantization after normal ordering. Using the
property of B(n,m)

B(n, 	)B(m, n + 	) = B(n + m, 	), (32)

one can easily check that the Virasoro algebra is satisfied at the classical level (in Poisson
brackets)

(Qm,Qn) = −(m − n)Qm+n. (33)

Note that the function B(n, k) transforms under the similar transformation

Qm → UQmU−1, U = e
∑

k λka−kbk (34)

as

B(n, k) → ekλk

e(n+k)λ(n+k)
B(n, k). (35)
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Choosing

λk = 1

2k
log[k/ḟ (ik)], (36)

we get

B(n, k) → 1. (37)

This means that the function f (∂t ) has no real physical significance, except when (36) is
ill-defined, e.g. ḟ (ik) = 0 or k = 0.

If ḟ (ik) = 0, f has a degeneracy of zeros at k. This is assumed to be not the case in our
derivation. In the above we have also assumed that k 	= 0 (see (26)). Hence, as far as we have
considered, we can always set B(n, k) = 1 without loss of generality.

To summarize, for the action (1), a nonlocal particle theory with conformal symmetry is
characterized by its spectrum Z . All possible f (∂t )’s with the same spectrum are equivalent
if ḟ (ik)k > 0 for all k ∈ Z . After change of variables, the Virasoro algebra can always be
realized in terms of the creation annihilation operators for excitation modes of this spectrum
simply as

Qn =
∑
k∈Z

a−kbk+n. (38)

Compared with the spectrum of an open string, each sequence of zeros {zi + n : n ∈ Z}
is expected to correspond to one dimension in the target space. The sequences come in pairs
(zi,−zi), except when zi = 0 or zi = 1/2 (so that ±zi define the same sequence). In view
of the spectrum of the sequences of zeros, we expect that zi = 0 corresponds to open strings
with Neumann boundary conditions on both endpoints, and zi = 1/2 to open strings with the
Neumann boundary condition on one endpoint and the Dirichlet boundary condition on the
other endpoint. This will be shown more explicitly below, and we will discuss the generic
case with zi ∈ (0, 1/2) in section 4.

Incidentally, we remark that the particle theory (1) does not exhaust all possible realization
of the Virasoro algebra in terms of creation and annihilation operators. We give a counter-
example in the appendix.

The formulae above can be easily modified to adapt to the case of a single field

x = y. (39)

First, the function f (∂t ) should be symmetric f (∂t ) = f (−∂t ). Thus the zeros of f will come
in pairs (k,−k)

Z = {k|f (ik) = 0} = {±zi + n; n ∈ Z}, (40)

except when the zeros are on the fixed points Z or Z + 1/2. Without loss of generality we can
assume that zi ∈ [0, 1/2].

The general solution of x is

x = 1√
2

∑
i

∑
n∈Z

(
x(zi+n) e−i(zi+n)t + y(zi+n) ei(zi+n)t

)
. (41)

If there are zeros on the fixed points, we get in the general solution of x

x0 + pt +
∑
n	=0

xn eint and/or
∑
n∈Z

xn+1/2 ei(n+1/2)t . (42)

The simplectic two-form ω is given by the same expressions (23) above. The conserved
charges become

Qn =
∑
k∈Z

[(k + n)ḟ (ik) + kḟ (i(k + n))]x−kyk+n, (43)

assuming that the fixed points do not appear in Z .
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2.3. Quantization

Let us consider Virasoro generators of the form

Ln =
∑
k∈Z

B(n, k) : a−kbk+n :, (44)

where ak, bk satisfy

[ak, b	] = kδ0
k+	. (45)

This is just (29) with normal ordering. For k > 0, ak, bk are annihilation operators, and for
k < 0, ak, bk are creation operators. Then we have

[Lm, ak] = −kB(m,−m − k)am+k, [Lm, bk] = −kB(m, k)bm+k. (46)

From this it is straightforward to check that if B satisfies the identity

(k + m)B(m, k)B(n, k + m) − (k + n)B(n, k)B(m, k + n) = 1
2 (m − n)B(m + n, k), (47)

the Virasoro algebra is guaranteed

[Lm,Ln] = (m − n)Lm+n − δ0
m+nC(n), (48)

where

C(n) = −
∑

−n<k<0,k∈Z
k(k + n)B(n, k)B(−n, k + n). (49)

For B(n, k) = 1 , we get C(n) = c
12n(n − 1)(n + 1) with the central charge c = 2 for each

sequence of zeros of f , as it should be for two scalar fields x and y. For the generic expression
of B (30) in the nonlocal particle theory, we have B(n, k)B(−n, k + n) = 1, and so

C(n) =
n∑

m=1

(m − z)(n − m + z) = 1

6
n(n − 1)(n + 1) + nz(1 − z) (50)

for the contribution of a sequence k = z + m(m ∈ Z). We can absorb the last term into L0 by
shifting L0 by the constant z(1 − z)/2. The central charge is therefore always c = 2 for each
sequence of zeros.

If there is only one scalar field, i.e., x = y, the contribution of each sequence of zeros to
the central charge is 1.

The contribution of a sequence of zeros of f to the Casimir energy a (ground-state energy
of the Hamiltonian) can be computed as

a =
∑

k

(a−kbk− : a−kbk :) =
∑
k<0

(−k) =
∞∑

m=1

(m − z)

= 1

24
− 1

8
(2z − 1)2 = − 1

12
+

1

2
z(1 − z). (51)

When z = 0, this gives a = −1/12 as it should for two flat directions in the target space.
The z-dependent piece in a suggests that we shift L0 by the same number z(1 − z)/2 as

it was suggested by C(n) above. In terms of the shifted operator L0, the contribution of a
sequence of zeros of f to the central charge and the zero-point energy are the same as two flat
directions in the target space. Nevertheless, the conformal field theory defined by a generic
f can certainly be inequivalent to an open string in a flat background, because the spectrum
{zi + n} and Virasoro constraints are different.
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Given the same ghost system as the open string (which will be described as ghost of a
nonlocal particle below), we should select 26 sequences of zeros of f so that the total central
charge of the Virasoro algebra is 0. The shifted L0 should be defined as

L0 =
∑

i

⎡
⎣ ∑

ki=zi+Z

: a−ki
bki

: +
1

2
zi(1 − zi)

⎤
⎦ , (52)

and the Virasoro constraints should be

Lm − aδ0
m = 0, m � 0, (53)

where a = S−T
24 . Here S and T are the number of sequences of zeros of f for target space

coordinates which are spacelike or timelike. Since S + T = 26 in order to cancel the Virasoro
anomaly of the ghost, here we want T = 1 and S = 25, and so a = 1.

2.4. Classification

In the case x = y,

S = − 1

2π

∫
dt xf (∂t )x. (54)

Without loss of generality we can assume that the function f (∂t ) is even

f (−∂t ) = f (∂t ). (55)

The equation of motion is

f (∂t )x = 0. (56)

If the transformation (17) is a symmetry, given a solution x of the equation of motion, eint ẋ

must also be a solution. That is, we need

f (∂t + in)ẋ = 0 (57)

whenever x satisfies (56).
We will consider three classes of f with conformal symmetry. These are the cases when

the nonlocal particles would be naturally described as a string because, as we will see below,
the symplectic two-form and conserved charges can be naturally expressed as integrals of a
fictitious variable. The mathematical identity that will help us to do this is

A(t + a)B(t) − A(t)B(t − a) = d

dt

[∫ a

0
dβ A(t + β)B(t + β − a)

]
. (58)

To show how this formula leads to a fictitious dimension on the nonlocal particle, we will
carry out the canonical quantization all over again, although the results above can be applied
to all the examples of this section.

2.4.1. First class. For the first class, f is a periodic or anti-periodic function

f (∂t + i) = ±f (∂t ). (59)

Given (59), the conformal symmetry condition (57) is equivalent to

(±)n∂t [f (∂t )x
μ] = 0, (60)

which holds whenever the equation of motion is satisfied. Since we have assumed that f is
an even function, its Fourier expansion is

f (∂t ) =
∑

n

′
fn enπ∂t , f−n = fn, (61)

8
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where
∑

n
′ denotes a sum over either even or odd numbers, depending on whether f is periodic

or anti-periodic.
Let us start with one spacetime dimension for the first class. Variation of the action is

δS = 1

2π

∫
dt

{
δx(t)f (∂t )x(t) + x(t)

∑
n

′
fnδx(t + nπ)

}

= 1

2π

∫
dt

{
δx(t)f (∂t )x(t) +

∑
n

′
fn

{
x(t − nπ)δx(t)

+
d

dt

[∫ nπ

0
dβ x(t + β − nπ)δx(t + β)

] }}

= 1

2π

∫
dt

{
2δx(t)f (∂t )x(t) +

d

dt

∑
n

′
fn

×
[ ∫ nπ

0
dβ x(t + β − nπ)δx(t + β)

]}
. (62)

The symplectic two-form is the differential of the total derivative part of −δS

ω = 1

2π

∑
n

′
fn

[∫ nπ

0
dβ δx(t + β − nπ)δx(t + β)

]
. (63)

Noether’s theorem gives us the conserved charges for the symmetry transformations (17)

δt = ε e−imt (64)

as

Qm

1

2π

∑
n

′
fn

[∫ nπ

0
dβ e−im(t+β)ẋ(t + β)x(t + β − nπ)

]
, (65)

where the equation of motion is used to simplify the expression.

2.4.2. Second class. The second class of actions with conformal symmetry is given by (54)
with

f (∂t ) = g(∂t )∂t , (66)

where g(∂t ) is an odd periodic or anti-periodic function

g(∂t + i) = ±g(∂t ), g(−∂t ) = −g(∂t ). (67)

The condition for conformal symmetry (57) is then

(±)n(∂t + in)[f (∂t )x
μ] = 0 (68)

whenever x satisfies the equation of motion. This is obviously valid. The Fourier expansion
of g is

g(∂t ) =
∑
n�0

′
gn enπ∂t , g−n = −gn. (69)

Again the sum is only over either even or odd numbers.
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Variation of the action is

δS = − 1

2π

∫
dt

{
δx(t)f (∂t )x(t) + x(t)

∑
n

′
gnδẋ(t + nπ)

}

= − 1

2π

∫
dt

{
δx(t)f (∂t )x(t) +

∑
n

′
gn

{
x(t − nπ)δẋ(t)

+
d

dt

[∫ nπ

0
dβx(t + β − nπ)δẋ(t + β)

]} }

= − 1

2π

∫
dt

{
2δx(t)f (∂t )x(t) +

d

dt

∑
n

′
gn

[
−x(t + nπ)δx(t)

+
∫ nπ

0
dβ x(t + β − nπ)δẋ(t + β)

]}
. (70)

The symplectic two-form is thus

ω = 1

2π

∑
n

′
gn

[
−δx(t + nπ)δx(t) +

∫ nπ

0
dβ δx(t + β − nπ)δẋ(t + β)

]
. (71)

The conserved charges for the transformation (64) are then

Qm = 1

2π

∑
n

′
gn

[
−x(t + nπ) e−imt ẋ(t) +

∫ nπ

0
dβ x(t + β − nπ)∂β( e−im(t+β)ẋ(t + β))

]

= 1

2π

∑
n

′
gn

[
−

∫ nπ

0
dβ e−im(t+β)ẋ(t + β)ẋ(t + β − nπ)

− (x(t − nπ) + x(t + nπ)) eimt ẋ(t) + x(t) e−im(t+nπ)ẋ(t + nπ)

]

= −1

2π

∑
n

′
gn

[ ∫ nπ

0
dβ e−im(t+β)ẋ(t + β)ẋ(t + β − nπ)

+ e−imt (x(t − nπ) + x(t + nπ))ẋ(t)

]

= −1

2π

∑
n

′
gn

[∫ nπ

0
dβ e−im(t+β)ẋ(t + β)ẋ(t + β − nπ)

]
. (72)

Again the equation of motion is used to simplify the expression.
Since these are the conserved charges derived from the symmetry (64), the Poisson

brackets among the charges Qm are given by the classical Virasoro algebra

(Qm,Qn) = (m − n)Qm+n. (73)

Examples of this class of models include the nonlocal particle theory equivalent to an
open string with Neumann boundary conditions on both endpoints (see section 4.1), or the
Neumann boundary condition on one endpoint but the Dirichlet boundary condition on the
other endpoint (4.2).

2.4.3. Third class. The third class is the exceptional case mentioned above. It has

f (∂t ) = h(∂t )

∂t

, (74)

10
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where h(∂t ) is an odd periodic function

h(∂t + i) = (±)h(∂t ), h(−∂t ) = −h(∂t ). (75)

The Fourier expansion of h is the same as (69). If h has only a simple zero at k ∈ Z, f has no
zero at k = 0, but has a zero at all other integers. Thus the sequence of zeros is not complete.
Nevertheless, the condition (57) is now

(±)n(∂t + in)−1∂t [h(∂t )x(t)] = 0. (76)

This holds because the equation of motion f (∂t )x = 0 implies that h(∂t )x = 0.
Since the inverse operator of ∂t is not always well defined, we will only consider the cases

when h(0) = 0, e.g. h(∂t ) = tanh(π∂t ). For the general solution

x(t) =
∑
n	=0

xn eint , (77)

it is straightforward to repeat the same derivation above to get

ω = C
∑
n	=0

δx−nδxn

in
, (78)

where C = ḣ(i), and

Qm = C
∑
n	=0

m + n

n
x−nxm+n. (79)

In this case it is not so easy to use the formula (58) to express ω and Qm as an integral, because
the inverse of ∂t is not necessarily well defined.

An explicit example is the nonlocal particle equivalent to an open string with Dirichlet
boundary conditions on both endpoints (see comments at the end of section 4.2).

2.5. More than one dimensions

One can easily extend the nonlocal particle theory in one dimensions to D-dimensional
spacetime, replacing (54) by

S = − 1

2π

∫
dt xμf (∂t )xμ. (80)

This theory has Lorentz symmetry (but not necessarily translational symmetry). If we do
not care about Lorentz symmetry, there can be more general nonlocal action with conformal
symmetry

S = 1

2π

∫
dtxμfμν(∂t )x

ν, (81)

where fμν satisfies

fμν(−∂t ) = fνμ(∂t ), μ, ν = 0, . . . , d. (82)

The Nth class (N = −1, 0, 1) of action with conformal symmetry has

fμν(∂t ) = gμν(∂t )∂
N
t , (83)

where gμν(∂t ) satisfies

gμν(∂t + i) = 
μ
λgλν(∂t ), gμν(−∂t ) = (−1)Ngνμ(∂t ), (84)

and 
μ
λ is an SO(1, d) matrix.

11
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3. Unitarity

In the above we have only considered the mathematical formulation of nonlocal particles,
without worrying about whether they make physical sense or not. As a simple example of
how things can go wrong, we consider the case with

g(∂t ) = sinh(π∂t ) (g1 = −g−1 = 1/2, gn	=1 = 0) (85)

for an action of the second class. The equation of motion is

ẋ(t + π) = ẋ(t − π) (86)

and the general solution is

x(t) = x0 + y0t +
∑
n	=0

yn

in
eint . (87)

According to (71), the symplectic two-form is

ω = δx0δy0 +
∑
n	=0

(−1)n

2in
δynδy−n. (88)

The inverse of the symplectic two-form is the Poisson bracket

(x0, y0) = 1, (yn, y−n) = (−1)n2in. (89)

The Poisson bracket for x is thus

(x(t), ẋ(t ′ + π)) = −1 +
∑
n∈Z

2 ein(t−t ′) = −1 + 4πδ(t − t ′). (90)

Upon quantization, equation (89) is equivalent to

[ym, yn] = (−1)m2mδ0
m+n. (91)

The Virasoro generators are

Qm = 1

4π

[
−

∫ π

0
ẋ(t + β − π) e−im(t+β)ẋ(t + β) dβ +

∫ −π

0
ẋ(t + β + π) e−im(t+β)ẋ(t + β) dβ

]

= −1

4π

[∫ π

−π

(
y0 +

∑
n

yn ein(t+β−π)

)
e−im(t+β)

(
y0 +

∑
n′

yn′ ein′(t+β)

)]

= −1

2

∑
n

(−1)nynym−n, (92)

which vanish for odd m. The Hamiltonian is

H = Q0 = −1

2

∑
n

(−1)ny−nyn. (93)

Apparently the operators ym and Qm are reminiscent of αm and L−m in the open string theory.
The only difference is the extra factors of (−1)n’s, and this difference is crucial. Due to these
(−1)n factors, either the Hilbert space contains negative-norm states, or the Hamiltonian is
unbounded from below. From (93), we see that the Hamiltonian is unbounded from below
due to oscillation modes with even n. One might want to avoid this pathology at the quantum
level by defining the vacuum to be annihilated by y−n for even n > 0, so that states created
by yn for even n has positive energy. For example, for m > 0, the state y2m |0〉 has positive
energy

Hy2m|0〉 = −y2m(−2m + y2my−2m)|0〉 = 2my2m|0〉. (94)

12



J. Phys. A: Math. Theor. 42 (2009) 055202 T-C Cheng et al

(The odd modes will then obey the usual convention that y2m+1|0〉 = 0 for m � 0.) But then
this state is of negative norm

〈0|y−2my2m|0〉 = −2m < 0. (95)

In fact, it is not necessary to go through the detailed computation to tell whether an action
suffers the problem of negative-norm states or the problem of Hamiltonians unbounded from
below. For an ordinary free scalar theory in D dimensions, the Fourier transformation of
two-point correlator is given by

〈ψ(p)ψ(q)〉 = δ(D)(p − q)
i

p2 − m2 + iε
. (96)

Now if the propagator has multiple poles, the correlator near the ith pole is given by

〈ψ(p)ψ(q)〉 
 δ(D)(p − q)
iCi

p2 − m2
i + iε

, (97)

where Ci is the residue of the ith pole. The sign of this quantity when p and q are on-shell
(which is the same as the sign of Ci because ε > 0) is correlated with the sign of the norm of
the single particle state with momentum p. Therefore the requirement of unitarity is equivalent
to demanding the residues of all poles of the propagator, which is 1/f (ik) for our case, to be
of the same sign. Otherwise, there will either be negative-norm states or the Hamiltonian will
be unbounded from below.

In the example above, f (ik) = −k sin(πk) and the residues of poles of the propagator
1/f (ik) have alternating signs. Hence half of the oscillation modes have negative energy while
the other half have positive energy.

In the following we will demand that the theory be unitary (no negative norm states) and
that the classical Hamiltonian be positive definite. (Tachyons can appear after including the
quantum correction due to Casimir effect, yet the quantum spectrum will still be bounded from
below.) In other words, we will demand that the residues of poles of 1/f (ik) be all positive.
When k is close to a pole of 1/f (ik), we have

1/f (ik) 
 1

f ′(ik0)(k − k0)
, (98)

and thus the residue of the pole at k0 is just 1/f ′(ik0). This means that we shall demand that
the slope of f (ik) at all zeros of f (ik) be positive.

4. Open string as nonlocal particle

4.1. The Neumann boundary condition

The requirement of unitarity implies that g(∂t ) must be periodic rather than anti-periodic,
because the latter implies that half of the poles have negative residues. We also want
g(−∂t ) = −g(∂t ) (see (67)) to hold. A simple modification of our previous example that
would meet our needs is

g(∂t ) = tanh(π∂t ) = sinh(π∂t )

cosh(π∂t )
. (99)

The same action was considered by Kato [5] long time ago as a particle action equivalent to
the bosonic open string.

Let us now derive this action from open string theory by integrating out the bulk degrees
of freedom on the worldsheet, and show that this action is just the effective action for the
boundary coordinates.

13
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For a quadratic action, the effect of integrating out a variable is the same as plugging a
classical solution into the action. Thus, to integrate out X(τ, σ ) in the bulk of the string, we
only need its solution to the equation of motion for given boundary value X(τ, 0) = X0(τ ).
The general solution to the equation of motion(

∂2
τ − ∂2

σ

)
X(τ, σ ) = 0 (100)

with the Neumann boundary condition ∂σX = 0 at σ = π is

X(τ, σ ) =
∫

dk eikτ cos(k(σ − π))x̃(k), (101)

where x̃(k) is determined by X0

x̃(k) = 1

2π cos(kπ)

∫
dτ e−ikτX0(τ ). (102)

Plugging (101), (102) into the action, we get

S = 1

2π

∫
dτ

∫ π

0
dσ((∂τX)2 − (∂σX)2) = 1

2π

∫
dτ [X∂σ X]σ=0

= − 1

2π

∫
dτ dτ ′X0(τ )G(τ − τ ′)X0(τ

′), (103)

where the kernal is

G(τ) = 1

2π

∫
dk k

sin(kπ)

cos(kπ)
eikτ . (104)

It is easy to check that this is equivalent to the action (54) with the function f (∂t ) = g(∂t )∂t

where g(∂t ) is given by (99).
Since open string vertex operators only live on the worldsheet boundary, in principle we

can turn an open string theory in any open string background to a nonlocal particle theory.
Note that not every different choice of g(∂t ) defines a different theory. The choice (99) is

physically equivalent to any other choice of the form

g(∂t ) = g0(∂t ) sinh(π∂t ) (105)

as long as g0 satisfies the following criteria:

• g0(ik) has no zeros (so that the solution to the equation of motion is still (87)).
• g0(ik) is anti-periodic (so that g(ik) is periodic).
• g0(ik) = g0(−ik) (so that g(ik) is an odd function).
• (−1)ng0(inπ) > 0 (so that g′(ik) is always positive at all zeros of g(ik), which are

k = nπ ).

These properties are all we need for the derivation below.
The symplectic two-form (71) is

ω = C

⎡
⎣2δx0δy0 +

∑
n	=0

1

in
δynδy−n

⎤
⎦ , (106)

where

C ≡
∑

n

′ n
2
gn = 1

2π
g′(0). (107)

Canonical quantization therefore gives

[ym, yn] = mC−1δ0
m+n, [x0, y0] = 1

iC
. (108)
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According to (72), the Virasoro generators are

Qm = C
∑
n∈Z

y−m−nyn. (109)

Up to overall constant factors of C which can be absorbed by scaling the coordinate x, these
equations are the same as the open string with the following identification (assuming that we
scaled C to C = 1):

x0 = x, y0 = p, ym = αm, Qm = 2L−m. (110)

4.2. The Dirichlet boundary condition

For an open string with one endpoint (at σ = π ) obeying the Dirichlet boundary condition, we
can also integrate out the bulk of the string to obtain the effective action for the other endpoint
coordinate at σ = 0

X(τ, π) = 0, X(τ, 0) = X0(τ ). (111)

The general solution of the equation of motion (100) with the Dirichlet boundary condition is

X(τ, σ ) =
∫

dk eikτ sin(k(π − σ))x̃(k). (112)

Therefore,

x̃(k) = 1

2π sin(kπ)

∫
dτ e−ikτX0(τ ) (113)

and we can plug it into the worldsheet action to get

S = − 1

2π

∫
dτ dτ ′X0(τ )G(τ − τ ′)X0(τ

′), (114)

where

G(τ) = 1

2π

∫
dk k

cos(kπ)

sin(kπ)
eik(τ ). (115)

This corresponds to

g(∂t ) = cosh(π∂t )

sinh(π∂t )
(116)

for our particle action (54) with f (∂t ) = g(∂t )∂t .
The general solution to the equation of motion for the nonlocal particle is

x(t) =
∑
n∈Z

xn+1/2 ei(n+1/2)t . (117)

It follows that the symplectic two-form is

ω = 1

2

∑
n∈Z

δyn+1/2δy−n−1/2

n + 1/2
, (118)

and the conserved charges are

Qm = 1

2

∑
n∈Z

δyn+1/2δym−n−1/2. (119)

One might wonder what happens to the open string with Dirichlet boundary conditions on
both endpoints? In this case we cannot apply the same trick used above. But we can construct
the equivalent nonlocal particle theory directly from the spectrum of the open string, which
is Z − {0}. This spectrum suggests a model of the third class with h(∂t ) = tanh(π∂t ). It is
obvious that this nonlocal particle theory is equivalent to the open string theory with Dirichlet
boundary conditions on both endpoints.
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4.3. Ghosts

To fully match with the open string theory, we also need to rewrite the ghosts living on the
string worldsheet as a particle theory. The action for the two-dimensional bc conformal field
theory should be

Sg = i

2π

∫
dt b(t)g(∂t )c(t), (120)

where b and c are anticommuting fields. The action is invariant under the symmetry
transformation

δb(t) = ε eint (ḃ(t) + inλb(t)), δc(t) = ε eint (ċ(t) + in(1 − λ)c(t)), (121)

where (λ, 1 − λ) are the conformal weights of b and c.
It is straightforward to derive the symplectic two-form

ω = i

2π

∑
n

′
gn

∫ nπ

0
dβ δb(t + β − nπ)δc(t + β), (122)

and the conserved charges

Qm = i

2π

∑
n

′
gn

∫ nπ

0
dβ eim(t+β)b(t + β − nπ)[ċ(t + β) + im(1 − λ)c(t + β)]. (123)

Substituting the general solutions of the equation of motion

b =
∞∑

n=−∞
bn e−int , c =

∞∑
n=−∞

cn e−int , (124)

into the symplectic two-form (122) and conserved charges (123), one finds

ω = iC
∞∑

n=−∞
bnc−n, (125)

Qm = C

∞∑
n=−∞

[m(λ − 1) − n]bm+ncn. (126)

We should take λ = 2 for the ghosts of open string theory. The 26-dimensional bononic open
string theory can thus be viewed as a 26-dimensional theory of nonlocal particles with the
action (54) of the second class (66) with g(∂t ) given by (99), plus a ghost with the action (120).

Now that we have all the algebraic elements of open string theory, we can construct vertex
operators and define scattering amplitudes in exactly the same way we define perturbative
open string theory. The vertex operator is defined as a local operator V with conformal
dimension 1

[Qm,V ] = eimt

(
−i

d

dt
+ m

)
V. (127)

For example, the tachyon vertex should be given by

V0(k, t) =: eik·X(t) :

= exp

(
k ·

∞∑
n=1

y−n

n
eint

)
eik·x(t) exp

(
−k ·

∞∑
n=1

y−n

n
e−int

)
, (128)

where

k2 = 2, Xμ(t) = x
μ

0 + y
μ

0 t +
∑
n	=0

y
μ
n

in
eint , xμ(t) = x

μ

0 + y
μ

0 t. (129)
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Obviously all the scattering amplitudes are exactly the same as in open string theory at the tree
level. The path integral approach to loop diagrams based on Riemann surfaces of different
topology is obscured. However we can still take the operator approach [6] to construct the
loop amplitudes. Anyway, there is a unique way to define loop diagrams without breaking
conformal symmetry.

Fermionic fields can also be introduced on the worldline in a similar way as the ghosts.
It should be straightforward to define nonlocal particles equivalent to superstrings. The
worldsheet theory of a superstring is equivalent to the juxtaposition of free bosons, free
fermions and ghosts, all of which we know how to describe in terms of nonlocal particles.
Realizing that the oscillation modes on a string can be directly matched with those on a
nonlocal particle, to derive the supersymmetry transformation rule for the nonlocal particle
theory, one can simply copy the transformation rules for the oscillation modes on a superstring,
and reinterpret them as the rules for the oscillation modes on a nonlocal particle.

Before closing this section, we also comment that, while the notion of a two-dimensional
metric is absent in the particle theory, it seems impossible to talk about anything more than
what is in the conformal gauge, e.g. the Weyl symmetry. On the other hand, since we have
introduced a fictitious coordinate β in expressions like (72), and thus the two-dimensional
nature of the nonlocal particle is not totally invisible, it may be possible to introduce auxiliary
fields to ‘covariantize’ these expressions, such that these auxiliary fields correspond to the
two-dimensional metric on a string before gauge fixing. At that time we can start addressing
questions concerning Weyl symmetry, etc.

5. Open string in nontrivial backgrounds

In the above we have shown that a certain choice of the function f (∂t ) in the nonlocal particle
action (54) leads to a theory equivalent to the bosonic open string in flat space with the
Neumann (or Dirichlet) boundary condition. A different choice of f (∂t ) would then lead to a
theory equivalent to the bosonic open string in flat space with a nontrivial boundary interaction,
corresponding to a nontrivial open string background, i.e., a nontrivial D-brane configuration.
We will continue to focus on quadratic actions only.

Let us consider an explicit example where the action is of second class with

g(∂t ) = sinh(π∂t + iθ) sinh(π∂t − iθ)

sinh(2π∂t )
. (130)

The general solution to the equation of motion is

x(t) =
∑
n∈Z

y+
n

i(n − θ/π)
ei(n−θ/π)t +

∑
n∈Z

y−
n

i(n + θ/π)
ei(n+θ/π)t . (131)

The symplectic two-form is

ω =
∑
n∈Z

δy+
n δy−

−n

i(n − θ/π)
. (132)

The conserved charges are

Ql = −
∑
n∈Z

y+
ny−

−n−l . (133)

The expression of the symplectic two-form suggests that we decompose x(t) in another way

x(t) = x̃+(t) + x̃−(t), (134)
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where

x̃± =
∑

n

ỹ±
n

i(n ∓ sgn(n)θ/π)
ei(n∓sgn(n)θ/π)t , (135)

where the function sgn(n) is defined by sgn(n) ≡ n/|n| for n 	= 0 and sgn(0) = 1, and

ỹ±
n = y±

n (n � 0), ỹ±
n = y∓

n (n < 0). (136)

Upon quantization, we get[
ỹ+

0 , ỹ−
0

] = − θ

π
, (137)

and[
ỹ+

n , ỹ+
−n

] = n − θ/π,
[
ỹ−

n , ỹ−
−n

] = n + θ/π for n > 0. (138)

Let us make a digression here and consider the limit θ → 0 and change of variables

x0 ≡ ỹ+
0 − ỹ−

0

−2iθ/π
, y ′

0 ≡ ỹ+
0 + ỹ−

0 . (139)

Commutation relations are now

[x0, y
′
0] = − i

2C(θ)
,

[
ỹ+

n , ỹ+
−n

] = n

2C(θ)
,

[
ỹ−

n , ỹ−
−n

] = n

2C(θ)
. (140)

Interestingly, the operators have a one-to-one correspondence with those of the closed string

x0 = x, y ′
0 = p, ỹ+

m = αm, ỹ−
m = α̃m, (141)

where the notation is such that the closed string target space variable is

X(τ, σ ) = x + pτ +
i√
2

∑
n	=0

[
αm

m
eim(τ+σ) +

α̃m

m
eim(τ−σ)

]
. (142)

It appears that the closed string may be viewed as a special limit of a more general nonlocal
particle model. However this observation has to be taken with a grain of salt, because the
closed string theory has two commuting copies of Virasoro algebra for the left-moving and
right-moving modes, but there is only one copy of Virasoro algebra for this particle theory.
We will see how to generalize our ansatz for nonlocal particles to incorporate closed strings.

This nonlocal particle theory is actually equivalent to an open string theory with the usual
bulk Lagrangian in the flat space and a nonlocal boundary interaction

S = 1

2π

∫
dτ dσ ∂X ∂̄X +

∫
dτXh(∂τ )Ẋ

∣∣∣∣
σ=0

, (143)

where h(∂τ ) is the difference between (130) and (99)

h(∂τ ) = sinh(π∂t + iθ) sinh(π∂t − iθ)

sinh(2π∂t )
− sinh(π∂t )

cosh(π∂t )
. (144)

This should be obvious from our derivation in section 4.1. We have thus found an exact,
marginal (nonlocal) deformation of the bosonic open string theory. Nonlocal interactions in
string theory have been studied in the past in different contexts [7].

However, in section 2.2 we commented that the only thing that matters physically in the
quadratic nonlocal particle action is the spectrum. The description above is not giving the
essential properties of the theory in the most transparent way as it depends on too much detail
of f . Instead, we can try to find a string worldsheet theory with the same spectrum. Given the
two sequences of zeros {n ± θ/π}, it is natural to construct a worldsheet scalar field

Z(τ, σ ) =
∑
n∈Z

[αn ei(n+θ/π)(τ+σ) + βn e−i(n+θ/π)(τ−σ)], (145)
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which gives the same general solution as (131)

Z0(τ ) =
∑
n∈Z

[αn ei(n+θ/π)τ + βn e−i(n+θ/π)τ ] (146)

at σ = 0, and it satisfies the twisted periodic boundary condition

Z(τ, σ + 2π) = ei2θZ(τ, σ ). (147)

This is a boundary condition consistent with the standard worldsheet action in flat space, that
is, it satisfies the condition

(δZ∂σ Z∗ + δZ∗∂σZ)|σ=2π
σ=0 = 0 (148)

necessary to guarantee that a solution of the equation of motion

∂∂̄Z = 0 (149)

extremizes the action.
Note that the twisted periodic boundary condition is not a typical open string boundary

condition, which should not have any nonlocal correlation between the two endpoints of the
string. This is, for example, not the same as the boundary conditions for an open string
stretched between two D-branes separated by an angle θ in the complex plane of Z, because
the values of Z at σ = 0, 2π are not fixed. This is certainly not a closed string, either, since the
string is not closed. This is a generalization of both open string and closed string, where the
distinction between them is blurred.

6. Closed string as nonlocal particle

For the open string, we can interpret the nonlocal particle as the boundary of the open
string. The equivalence between open string theory and particle theory is thus understandable.
However, for the closed string, vertex operators can be inserted at any point on the worldsheet.
No point on the closed string is special. It is hard to imagine how the closed string can also be
equivalent to a nonlocal particle. Remarkably, we will show here that closed strings can also
be described as nonlocal particles.

Roughly speaking, the degrees of freedom and its symmetry in a closed string is the same
as two copies of those of an open string, but with the zero modes of the two open strings
identified. Thus it is natural to consider the particle action

S = 1

2π

∫
dt[x(t)f (∂t )x(t) + y(t)f (∂t )y(t) + λ(sinh(π∂t )(x(t) − y(t)))], (150)

where

f (∂t ) = g(∂t )∂t , g(∂t ) = tanh(π∂t ). (151)

If the last term is absent in the action, we just have two copies of open string (with the Neumann
boundary condition). We shall identify them with the left-moving and right-moving modes
on the closed string. There are also two copies of the conformal symmetry and its Virasoro
algebra generators for x and y independently. The last term in (150) involves a Lagrange
multiplier λ. Note that since λ is a constant variable, the last term is a total derivative. Hence
the equations of motion for x and y, as well as the symplectic two-form and conserved charge
Qm are not modified. But it imposes the constraint∫

dt (sinh(π∂t )(x(t) − y(t))) = 0. (152)
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Plugging into solutions of x and y

x = x0 + p0t +
∑

n

xn eint , y = y0 + q0t +
∑

n

yn eint , (153)

the constraint implies that

p0 = q0. (154)

According to the symplectic two-form

ω = x0p0 + y0q0 + · · · = (x0 + y0)p0 + · · · , (155)

this implies that the conjugate variable of p0 is now (x0 + y0). The other linear combination
(x0 − y0) is a non-dynamical constant which can be dismissed. As we have achieved the
identification of the zero modes, the closed string is thus also described as a nonlocal particle
theory.

7. Discussion

7.1. Summary of nonlocal particle theory

All physical properties of a nonlocal particle theory for two fields x and y with conformal
symmetry are encoded in the spectrum, i.e., the zeros of f

Z = {zi + n : n ∈ Z}, (156)

with each sequence specified by a number zi ∈ [0, 1). Here we assume that ḟ (ik)k is of the
same sign at all zeros of f , otherwise the theory is not unitary.

If x = y, f is symmetric and a zero at k implies a zero at (−k). The data characterizing
the conformal theory of a single scalar field x are again just the zeros of f

Z = {zi + m,−zi − m : m ∈ Z | f (zi) = 0} (157)

specified by a set of numbers zi . Each zi specifies two sequences of zeros of f unless zi = 0
or zi = 1/2. Other properties of f are irrelevant. If there are two functions f1(∂t ) and f2(∂t )

with the same set of zeros and they differ from each other only by a function �f which
vanishes at all the zeros of f1 and f2, the two theories defined by f1 and f2 are physically
equivalent. For example, if the zeros of f are at {z + n, n ∈ Z}, then

f (ik) + a sin2(π(k − z)) (158)

is equivalent to f (ik).

7.2. Nontrivial string backgrounds

As it is easy to write down nonlocal particle actions which are equivalent to an open string in
flat space with nonlocal interactions on the boundary (i.e., those with a spectrum of z 	= 0 or
1/2), it will be very interesting to characterize the D-brane configurations corresponding to
these nonlocal boundary interactions. It will also be interesting to study Witten’s cubic string
field theory [8] for these open string backgrounds.

We have demonstrated that by considering particle theory with higher derivatives, it is
possible to obtain not only open but also closed bosonic string theory. Using this method, one
can easily find new consistent backgrounds of string theory. Since solvable string backgrounds
used to be rare, it will be very helpful to investigate string theory in these backgrounds for our
understanding on the issue of background (in)dependence of string theory.
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7.3. Boundary string field theory

From the viewpoint of boundary string field theory, we are considering a class of solvable
backgrounds with nonlocal interactions on the boundary. This kind of backgrounds was
considered by Li and Witten [9]. It will be interesting to see if the nonlocal particle theories
with conformal symmetry are solutions minimizing the boundary string field theory action.

In the boundary string field theory, the coefficients in the boundary interactions
(coefficients in the function f (∂t )) correspond to spacetime fields. The fact that apart from the
location of zeros, most details of f are physically irrelevant indicates a large gauge symmetry
in the boundary string field theory.

7.4. Compactification and other backgrounds

While we claimed that we have constructed a closed string theory out of nonlocal particles, an
immediate question is whether we can consider compactification of space and find winding
modes in the particle theory. This is a question that we will focus on in the near future. For the
time being let us comment that the winding mode degrees of freedom can be easily found at
the self-dual radius. If we compactify the target spaces of both x and y at the self-dual radius,
both p0 and q0 are quantized. The linear combination p0 + q0 corresponds to the momentum
mode and p0 − q0 to the winding mode. Earlier we imposed the constraint p0 = q0 by a
Lagrange multiplier λ. We can just drop the Lagrange multiplier to recover the winding modes
in the particle theory. Once we can construct the string field theory at the self-dual radius, it
should be possible to find configurations corresponding to compactifications at other values
of the radius via a study of the associated Higgs mechanism.

On the other hand, it might not be possible to present all possible backgrounds of string
theory as a nonlocal particle theory. The conformal field theory in the appendix with Virasoro
generators defined by (29) with B defined by (A.2) is such an example. The value of the
nonlocal particle presentation of the string theory lies in its simplicity and abundance of new
backgrounds.

7.5. Relation to rigid strings

There was an attempt [10] to describe the QCD string by the so-called ‘rigid string’ which
has a worldsheet action involving higher derivative interactions. However there are only finite
derivatives, and its high-temperature partition function was shown to have a wrong sign [11]. A
natural question is whether it is possible to construct actions with infinite derivative (nonlocal)
terms to reproduce the correct high energy limit of a QCD flux tube [12], and whether such
strings can be described as a nonlocal particle.

Furthermore, while the rigid string can be viewed as a truncated description of a membrane
with one direction wrapped on a compactified dimension [13], later it was shown that a
‘rigid string’ can also be viewed as derived from a string in a similar fashion [14]. The
nonlocal string which is precisely equivalent to a string can thus be viewed as a completion
of the approximation of a string by a ‘rigid particle’, which has only finite higher derivative
terms.

Another topic that we will leave for future study is to find a nonlocal string/particle
theory which is equivalent to a membrane. Since the quantum membrane theory is much less
understood than strings, this equivalence may provide useful help for us to better understand
the M theory.
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Appendix. A non-particle example of conformal symmetry

For generators of the form (29), without assuming (30), the Virasoro algebra (33) is satisfied
if

(k + m)B(m, k)B(n, k + m) − (k + n)B(n, k)B(m, k + n) = 1
2 (m − n)B(m + n, k). (A.1)

This condition has a nontrivial solution

B(n, k) = 1 +
u + vn

k
(A.2)

for constant parameters u, v. This can never be realized in a nonlocal particle theory because
it does not satisfy (32). In order for Q0 to have a non-negative spectrum, we would like

B(0, k) = 1 +
u

k
(A.3)

to be positive-definite for all k ∈ Z (40). For 0 < zi < 1, this is possible if

0 < u < 1 − zi or − zi < u < 0. (A.4)

Upon quantization, the conserved charges are

Ln =
∑
k∈Z

B(n, k) : a−kbk+n : (A.5)

the Virasoro algebra is

[Lm,Ln] = (m − n)Lm+n − δ0
m+nC(n), (A.6)

where

C(n) = −
∑

−n<k<0,k∈Z
k(k + n)B(n, k)B(−n, k + n)

= 1

6
n(n + 1)(n − 1) + n(z + u)(1 − z − u). (A.7)

This corresponds to c = 2, and suggests a shift of L0 by (z + u)(1 − z − u)/2. The central
charge is 1.
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